# International Year of Biodiversity

#### **Jnited Nations Convention of Biological Diversity**



# **Tracking Extinction Risks:**

Asplenium scolopendrium var. americanum (in NY

# Conservation of Nature (IUCN)

# **Red List of Threatened Species**

# 47,677 species at risk including 35% of conifers and cycads

# Biodiversity loss has grim consequences for humanity

J. Marton-Lefevre, IUCN Director General Science, 5 March 2010

- Wild harvest
- Crop pollination
- Disaster mitigation
- Clean water
- Traditional cultures
- Unknown future benefits

### Population Ecology, Dynamics and Conservation of Rare Plants in New York State

Dudley J. Raynal and Donald J. Leopold State University of New York College of Environmental Science and Forestry Syracuse, NY

# With contributions from

Matt Buff, Tony Eallonardo, Joe Gawronski-Salerno, Sean Robinson, Sara Scanga = Critically imperiled in New York State because of extreme rarity (5 or fe s or very few remaining individuals) or extremely vulnerable to extirpation V York State due to biological or human factors.

= Imperiled in New York State because of rarity (6 - 20 sites or few remain viduals) or highly vulnerable to extirpation.

= Rare in New York State (usually 21 - 35 extant sites).

= Apparently secure in New York State.

= Demonstrably secure in New York State.

= Historical. No existing sites known in New York State in the last 20-30 y it may be rediscovered.

= Apparently extirpated from New York State, very low probability of scovery.

#### Endangered Species are those with:

- 1) 5 or fewer extant sites, or
- 2) fewer than 1,000 individuals, or
- 3) restricted to fewer than 4 U.S.G.S. 7 1/2 minute topographical maps, or
- 4) species listed as endangered by the USDI

#### Threatened Species are those with:

- 1) 6 to fewer than 20 extant sites, or
- 2) 1,000 to fewer than 3,000 individuals, or
- 3) restricted to not less than 4 or more than 7 U.S.G.S. 7 1/2 minute topographical map
- 4) listed as threatened by the USDI

#### Rare Species have:

- 1) 20 to 35 extant sites, or
- 2) 3,000 to 5,000 individuals statewide.

#### Exploitably Vulnerable Species are likely to become threatened in the near

throughout all or a significant portion of their range within the state if causal factors continue unchecked

#### How Do we know?

ung, Stephen M. 2008. New York Rare Pl atus Lists. New York Natural Heritage ogram, Albany, NY. June 2008. 116 p.

This list is also published at the websites www.nynhp.org

and

http://www.dec.ny.gov/regs/15522.html

## State-Protected Plants of Forests

IN NEW YORK STATE

- Critically imperiled throughout its range due to extreme rarity (5 or fewer ry few remaining individuals) or extremely vulnerable to extinction due to gical factors.
- Imperiled throughout its range due to rarity (6 20 sites or few remaining duals) or highly vulnerable to extinction due to biological factors.
- Either very rare and local throughout its range (21 100 sites), with a cted range (but possibly locally abundant), or vulnerable to extinction.
- Apparently secure throughout its range (but possibly rare in parts).
- Demonstrably secure throughout its range (but possibly rare in parts).
- No extant sites known but it may be rediscovered.
- **Species believed extinct.**
- **T**? = Status of the subspecies or variety unknown.

# New York State Vascular Plant Taxa

|          | Native      | Non-Native  | Total |
|----------|-------------|-------------|-------|
| Families | 155 (83%)   | 31 (17%)    | 186   |
| Genera   | 575 (56%)   | 447 (44%)   | 1,022 |
| Species  | 2,108 (59%) | 1,465 (41%) | 3,573 |
| Taxa     | 2,267 (60%) | 1,513 (40%) | 3,780 |

# Vascular Plant Taxa Rarity Status

| Endangered  | 91    | 2%  |
|-------------|-------|-----|
| Threatened  | 79    | 2%  |
| Rare        | 113   | 3%  |
| Vulnerable  | 217   | 6%  |
| Unprotected | 285   | 8%  |
| No Status   | 2,995 | 79% |



# Causes of Rarity

## Intrinsic factors vs. Extrinsic factors

# Intrinsic Factors

### Habitat specialization

### Genetic factors

### Symbioses

# **Extrinsic Factors**

### Natural

• Human-induced

### Natural Factors

- Interference, competition
- Natural disturbance, succession
- Pathogens and predators







# Human-induced Factors

- Habitat degradation and fragmentation
- Climate change





# Case Study 1

- Asplenium scolopendrium var. americanum American hart's tongue fern
- 2n=144 (tetraploid)
- Discovered in N. America in 1807 near Syracuse
- S2 in NY; S1 in rest of range (MI, AL, TN, ON); G4









le 1. Topo-edaphic features of Asplenium scolopendrium sites in central New Yo

| Feature          | Mean (std. dev.) |  |
|------------------|------------------|--|
| % slope          | 59 (±13)         |  |
| aspect           | 42º (±51º)       |  |
| рН               | 7.0 (±0.5)       |  |
| % nitrogen       | 1.7 (±6.7)       |  |
| ppm magnesium    | 435.9 (±127.5)   |  |
| ppm calcium      | 7227.1 (±2236.3) |  |
| ppm potassium    | 124.0 (±43.3)    |  |
| ppm phosphorus   | 51 (±20)         |  |
| % organic matter | 55.7 (±23.2)     |  |

mani Kuehn, D. M., and D. J. Leopold. 1993. Habitat characteristics associated with *Phyllitis scolopendriur* wm. var. *americana* Fern. (Aspleniaceae) in central New York. Bulletin of the Torrey Botanical Club 120:31









Munnsville

census year

1993

2010





#### 

Microsatellite characterization of Asplenium scolopendrium.

- Measure heterozygosity between and within element occurrences to determine genetic metapopulation structure.
  - For all of NYS occurrences and possibly for the rest of the North American occurrences.
  - Addresses the target of 15 self-sustaining populations indicated in the 1993 USFWS Recovery Plan.
- Measure of isolation by distance, if present.

Measure presence (if any) of drift and/or inbreeding effects.

Determine number of genetically distinct populations of AHTF and to what degree they are connected.

### Case Sludy Z

- Trollius laxus (spreading globe flower)
- 2n = 32
- S3, G3





| State | NHP Rank             | State Legal Status                               | # of Counties |        |
|-------|----------------------|--------------------------------------------------|---------------|--------|
|       |                      |                                                  | Historic      | Extant |
| NY*   | S3                   | Rare                                             | 25            | 10     |
| NJ    | S1                   | Endangered                                       | ?             | 5      |
| OH    | S1                   | Endangered                                       | 6             | 2      |
| PA**  | S1                   | Endangered                                       | 5             | 3      |
| CT*** | S1                   | Endangered                                       | 2             | 1      |
|       | *31 extant<br>**8 of | t sites, 26 historic sites<br>15 sites destroyed |               |        |










#### 

**Succession** 

| Dense woody<br>plant cover     | Sparse woody plant cover / canopy gaps | No woody plant<br>cover (open fens) |
|--------------------------------|----------------------------------------|-------------------------------------|
| Sufficient<br>microscale light |                                        |                                     |
| Both                           | Sufficient microto                     | oography                            |



#### Conclusions

- mportance of succession and disturbance to *T*. axus conservation.
- -Light and hydrology
- -Canopy gaps
- How to manage succession and disturbance for axus conservation.
- -Low to intermediate light levels optimal
- -Management framework
- mplications for management of North American ens.



number of native shrubs or

# Conservation of Alpine Flora



#### Southernmost communities of alpine vegetatio in the eastern United States



Alpine areas in the northeastern United States







#### Substratum

## Bare rock (~ 40% of alpine)

### •Fine-to-medium mineral soil

- Black humus layer
- •Layer of decomposed material
- •pH: 3.8 to 4.0

#### Microclimato

#### Overall harsh conditions

- Solar radiation
- High winds
- Thin soils



- Cold temperatures
- Water availability











Undesignated trail



Soil islands resulting from erosive impact

# Vegetation Change

- **Objective:** Document vegetation change
- - Little or no overall change in vegetation (nu
  - Measurable changes in species composition and presence/absence

# Methods

- 11 transects (30 m) established in 1984
- Sampled in 1984, 1994, 2002, 2007
- Point-intercept method every 5 cm





#### Transect 3 on Wright Pea

#### Encountered

## •58 species (29 families)

### •6 substratum types





gure 1. Change in mean frequency of bryophytes/lichens versus



e 2. Comparison of overall change in mean percent frequency between 1984 and 2007 for four different categories (paired ttest) (\* = p < 0.05) (TF = total plant and lichen frequency; BL = bryophytes/lichens: VP – vascular plants: BS – bare substratum



Figure 3. Transition diagram constructed through a point-by-point comparison of all data points across all 11 transects for data collected in 1994, 2002, and 2007.



re 6. Comparison of overall change in mean percent frequency een 1984 and 2007 for six different vegetation types (paired t-te o < 0.05) (P = pioneer; SM = sedge meadow; F = fen; S/H =

# Ipine species frequency changes

| Species                    | 1984  | 1994  | 2002  | 2007  |
|----------------------------|-------|-------|-------|-------|
| Carex bigelowii            | 5.85  | 2.82  | 2.94  | 2.5   |
| Diapensia lapponica        | 1.75  | 2.03  | 1.32  | 0.99  |
| Empetrum nigrum            | 4.03  | 3.97  | 3.36  | 2.96  |
| Minuartia groenlandica     | 0.03  | 0.11  | 0.3   | 0.2   |
| Sibbaldiopsis tridentata   | 0.85  | 1.09  | 2.33  | 2.14  |
| Salix uva-ursi             | 0.15  | 0.21  | 0.26  | 0.29  |
| Trichophorum<br>cespitosum | 4.92  | 5.77  | 8.84  | 8.54  |
| Vaccinium uliginosum       | 33 14 | 34 24 | 34 56 | 38 39 |

Years (Excluding Vaccinium uliginosum)



(\* = p < 0.05)



# Very little change in total plant and licher frequency

## **Definite changes in composition**

- Transects differed in respect to composition change
- Successional shift from bryophyte/lichen to vascular plant domination

## **Climate Change?**

#### ι υιμις ι αρηρ

- ontinue to sample transects every 5 years
- ermanent plots have been established along transects
- Representing different microclimates at different successional stages
- ompare successional process between differe microclimates
- etter assess causes of change

# Case Study 4

# Restoration of Rare Plants and Plant Communities on Brownfields

(Onondaga County, NY)

## nland salt marsh

photo taken in 1936 near downtown Syra

one of three inland salt marshes remaining in NYS (and only 1 in Michigan for 4 total in eastern US)
Restoration of alkaline industrial wastes in central New York

#### **Onondaga Lake**

Wastebed 14

### Wastebed 14





2.0 ha site planted, most of which is inland salt marsh community

# next growing season

#### le goldenrod – Solidago sempervirens

discovered in upstate NY along expressway near Syracuse)





and the second second

#### Aster subulatus – saltmarsh aster (rare in NYS) on restored site

#### licted survivorship probability



Cail ablarida (Cmal. ka<sup>-1</sup>)

## Trollius laxus spp. laxus in created rich fen

#### \_ \_ \_ \_ \_ \_ \_ \_

- Long-term monitoring is essential to assess the demographic and reproductive dynamics of rare species
- Knowledge of substrate characteristics is key to understanding population dynamics of rare species: especially hydrology, microtopography, chemistry
- The role of light intensity and quality provides a basis for evaluation of population change

#### 

- Linking habitat disturbance and resultant successional trajectories is critical for understanding rare plant demography
- Invasive species threaten populations of rare species
- Unproductive sites provide refuges for uncommon species and offer locations for successful restoration